Environmental fate and exposure; neonicotinoids and fipronil
نویسندگان
چکیده
Systemic insecticides are applied to plants using a wide variety of methods, ranging from foliar sprays to seed treatments and soil drenches. Neonicotinoids and fipronil are among the most widely used pesticides in the world. Their popularity is largely due to their high toxicity to invertebrates, the ease and flexibility with which they can be applied, their long persistence, and their systemic nature, which ensures that they spread to all parts of the target crop. However, these properties also increase the probability of environmental contamination and exposure of nontarget organisms. Environmental contamination occurs via a number of routes including dust generated during drilling of dressed seeds, contamination and accumulation in arable soils and soil water, runoff into waterways, and uptake of pesticides by nontarget plants via their roots or dust deposition on leaves. Persistence in soils, waterways, and nontarget plants is variable but can be prolonged; for example, the half-lives of neonicotinoids in soils can exceed 1,000 days, so they can accumulate when used repeatedly. Similarly, they can persist in woody plants for periods exceeding 1 year. Breakdown results in toxic metabolites, though concentrations of these in the environment are rarely measured. Overall, there is strong evidence that soils, waterways, and plants in agricultural environments and neighboring areas are contaminated with variable levels of neonicotinoids or fipronil mixtures and their metabolites (soil, parts per billion (ppb)-parts per million (ppm) range; water, parts per trillion (ppt)-ppb range; and plants, ppb-ppm range). This provides multiple routes for chronic (and acute in some cases) exposure of nontarget animals. For example, pollinators are exposed through direct contact with dust during drilling; consumption of pollen, nectar, or guttation drops from seed-treated crops, water, and consumption of contaminated pollen and nectar from wild flowers and trees growing near-treated crops. Studies of food stores in honeybee colonies from across the globe demonstrate that colonies are routinely and chronically exposed to neonicotinoids, fipronil, and their metabolites (generally in the 1-100 ppb range), mixed with other pesticides some of which are known to act synergistically with neonicotinoids. Other nontarget organisms, particularly those inhabiting soils, aquatic habitats, or herbivorous insects feeding on noncrop plants in farmland, will also inevitably receive exposure, although data are generally lacking for these groups. We summarize the current state of knowledge regarding the environmental fate of these compounds by outlining what is known about the chemical properties of these compounds, and placing these properties in the context of modern agricultural practices.
منابع مشابه
Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of ...
متن کاملConclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning
Large scale and partly prophylactic use of neonicotinoids and fipronil has raised concerns about the risks they pose to biodiversity, ecosystem functioning and ecosystem services. The Worldwide Integrated Assessment (WIA) presented in this special issue is the first attempt to synthesize the state of knowledge on these risks and covers over 800 peer-reviewed publications. Here, we present the m...
متن کاملA review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife
Concerns over the role of pesticides affecting vertebrate wildlife populations have recently focussed on systemic products which exert broad-spectrum toxicity. Given that the neonicotinoids have become the fastest-growing class of insecticides globally, we review here 150 studies of their direct (toxic) and indirect (e.g. food chain) effects on vertebrate wildlife--mammals, birds, fish, amphibi...
متن کاملFipronil: mechanisms of action on various organisms and future relevance for animal models studies
Because insects had developed resistance to several insecticides, today, neonicotinoids and fiproles are used to combat pests. The difference between this two classes of insecticides is that fipronil acts by inhibiting the receptors of nervous cells, while neonicotinoids perturbs the neuronal transmission. The suitable properties of fipronil make that its use to be more obvious on the pesticide...
متن کاملAn update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems.
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the suble...
متن کامل